If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6m^2-6=156
We move all terms to the left:
6m^2-6-(156)=0
We add all the numbers together, and all the variables
6m^2-162=0
a = 6; b = 0; c = -162;
Δ = b2-4ac
Δ = 02-4·6·(-162)
Δ = 3888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3888}=\sqrt{1296*3}=\sqrt{1296}*\sqrt{3}=36\sqrt{3}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{3}}{2*6}=\frac{0-36\sqrt{3}}{12} =-\frac{36\sqrt{3}}{12} =-3\sqrt{3} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{3}}{2*6}=\frac{0+36\sqrt{3}}{12} =\frac{36\sqrt{3}}{12} =3\sqrt{3} $
| w^2+6w+9=11+9 | | 5x-(6x+7)=2x-43 | | m-8=12m0 | | (2^x-1)*(3^x-9)=0 | | 2(5-6)=3(3x+1) | | 4(2)^x+3=28 | | 4(5-x)=2(x+3) | | 40x+(1.5xx5)=1000 | | F(x)=3-5x-2x2 | | 16=3p+13 | | f(5)=X+3 | | 3(x+1)=2(3x+1) | | 5+12x=55 | | 5x=-9/2-2/3x | | 5^(x-2)+4=12 | | 100-x/2=50 | | 16=p/3+13 | | (5x-3)^2/3-5=4 | | 2x+5+3x=6(x+10) | | x/12=9.6 | | 5/7=x20 | | 18-3n=-5(3n+6) | | (3x^2)/(7)=5 | | 5(4d−5)=20d−25 | | 3−0.25x=−1/2x+9 | | -3(1-x)=11+x | | 4(3-x)=18 | | -3(n+2)=18-7n | | 2v+7+5v=3(v+1)+4 | | 4n=15 | | 14=(3x+7)/2 | | 5+3(n+5)=20+n |